Improved Damped Quasi-Newton Methods for Unconstrained Optimization∗
نویسندگان
چکیده
Recently, Al-Baali (2014) has extended the damped-technique in the modified BFGS method of Powell (1978) for Lagrange constrained optimization functions to the Broyden family of quasi-Newton methods for unconstrained optimization. Appropriate choices for the damped-parameter, which maintain the global and superlinear convergence property of these methods on convex functions and correct the Hessian approximations successfully, are proposed in this paper.
منابع مشابه
On the Behavior of Damped Quasi-Newton Methods for Unconstrained Optimization
We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...
متن کاملOn the Behavior of Damped Quasi - Newton Methods for Unconstrained Optimization
We consider a family of damped quasi-Newton methods for solving unconstrained optimization problems. This family resembles that of Broyden with line searches, except that the change in gradients is replaced by a certain hybrid vector before updating the current Hessian approximation. This damped technique modifies the Hessian approximations so that they are maintained sufficiently positive defi...
متن کاملA Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems
In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...
متن کاملExploiting damped techniques for nonlinear conjugate gradient methods
In this paper we propose the use of damped techniques within Nonlinear Conjugate Gradient (NCG) methods. Damped techniques were introduced by Powell and recently reproposed by Al-Baali and till now, only applied in the framework of quasi–Newton methods. We extend their use to NCG methods in large scale unconstrained optimization, aiming at possibly improving the efficiency and the robustness of...
متن کاملA limited memory adaptive trust-region approach for large-scale unconstrained optimization
This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...
متن کامل